skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "DelRio, Frank W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Pure molybdenum disulfide (MoS2) solid lubricant coatings could attain densities comparable to doped films (and the associated benefits to wear rate and environmental stability) through manipulation of the microstructure via deposition parameters. Unfortunately, pure films can exhibit highly variable microstructures and mechanical properties due to processes that are not controlled during deposition (i.e., batch-to-batch variation). This work focuses on developing a relationship between density, hardness, friction, and wear for pure sputtered MoS2coatings. Results show that dense films (ρ = 4.5 g/cm3) exhibit a 100 × lower wear rate compared to porous coatings (ρ = 3.04–3.55 g/cm3). The tribological performance of high density pure MoS2coatings is shown to surpass that of established composite coatings, achieving a wear rate 2 × (k = 5.74 × 10–8mm3/Nm) lower than composite MoS2/Sb2O3/Au in inert environments. 
    more » « less
  2. null (Ed.)
    Abstract We report an investigation of the friction mechanisms of MoS 2 thin films under changing environments and contact conditions using a variety of computational and experimental techniques. Molecular dynamics simulations were used to study the effects of water and molecular oxygen on friction and bonding of MoS 2 lamellae during initial sliding. Characterization via photoelectron emission microscopy (PEEM) and Kelvin probe force microscopy (KPFM) were used to determine work function changes in shear modified material within the top few nanometers of MoS 2 wear scars. The work function was shown to change with contact conditions and environment, and shown by density functional theory (DFT) calculations and literature reports to be correlated with lamellae size and thickness of the basally oriented surface layer. Results from nanoscale simulations and macroscale experiments suggest that the evolution of the friction behavior of MoS 2 is linked primarily to the formation or inhibition of a basally oriented, molecularly thin surface film with long-range order. 
    more » « less